Tentamen Numerical Mathematics 2
 March 29, 2016

Duration: 3 hours.
In front of the questions one finds the weights used to determine the final mark.

Problem 1

a. Consider the problem $F(x)=d$ with $F(x)=A x$.
(i) [2] Give the definition of the absolute condition number of this problem and express it in terms of A, x and d for this case.
(ii) [1] Give the definition of the relative condition number of this problem and express it in terms of A, x and d for this case.
(iii) [1] How is the expression of the previous part related to the condition number of A.
b. Consider a system $A x=b$ where $b=[1,1]^{T}$. For which we consider two matrices

$$
A_{1}=\left[\begin{array}{cc}
2.001 & 2 \\
2 & 2.001
\end{array}\right], \text { and } A_{2}=\left[\begin{array}{cc}
2.001 & -2 \\
-2 & 2.001
\end{array}\right]
$$

(i) [2] Show that A_{1} and A_{2} have the same eigenvalues and eigenvectors.
(ii) [1] Show that the 2-norms of A_{1} and A_{2} are equal and moreover also the 2 -norms of inverses of the two matrices are equal and hence that $\kappa_{2}\left(A_{1}\right)=\kappa_{2}\left(A_{2}\right)$.
(iii) [2] Show that the relative condition number as defined in item a.(ii) is different. Which of the two solutions will suffer most from round-off error propagation?
c. Consider the matrix

$$
A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(i) [3] Using Gerschgorin's theorems, localize the eigenvalues of this matrix and show that the matrix is positive definite.
(ii) [1] Is pivoting needed to solve a system $A x=b$ with this matrix?
(iii) [1] Which direct method do you advice to use for this system and why?
d. Suppose we solve the problem $A x=b$ with Gaussian elimination with pivoting.
(i) [1] Explain what one tries to bound with the backward error for this problem.
(ii) [1] What does one want to bound with the forward error for this problem?
(iii) [1] How is the backward error related to the forward error?

Problem 2

a. [3] Let A and E be real symmetric matrices and let μ be the eigenvalue of $A+E$. Show that

$$
\min _{\lambda \in \sigma(A)}|\lambda-\mu| \leq\|E\|_{2}
$$

b. Consider the iteration

$$
(A-\mu I) y_{n+1}=x_{n}, \quad x_{n+1}=y_{n+1} /\left\|y_{n+1}\right\|, \quad n=0,1,2, \ldots
$$

where x_{0}, A and μ are given.
(i) [2] Where does the vector x_{n} converge to when A is real symmetric and its eigenvalues are all different?
(ii) [2] What determines the speed of convergence of the iteration?
c. Suppose we have a full real symmetric matrix A. As a preprocessing step for the QRmethod A is brought to tridiagonal form by an orthogonal similarity transformation.
(i) [1] Why is one doing this?
(ii) [3] Bring the following matrix to tridiagonal form using a Householder matrix:

$$
A=\left[\begin{array}{lll}
6 & 4 & 3 \\
4 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

d. Consider the QR-method used to compute all the eigenvalues of a real symmetric matrix A.
(i) [1] Give the basic step of the QR-method.
(ii) [1] Give the basic step of the QR-method including a shift.
(iii) [1] How is the shift used to speed up the convergence?
(iv) [1] Does a shift effect the order of the eigenvalues on the diagonal of the iterate?

Problem 3

a. Consider the approximation of a function $f(x)$ defined on $[-1,1]$ by a Chebyshev expansion $C_{n}(x)=\sum_{i=0}^{n} c_{i} T_{i}(x)$.
(i) [3] Give the expression for c_{i} following from a Least Squares minimization.
(ii) [2] Explain why the solution in the previous part is the preferred approximation to the polynomial minimax approximation of $f(x)$.
(iii) [1] Consider the function $f(x)$ which is equal to $1+x$ on $[-1,0]$ and $1-x$ on $[0,1]$. Will there be pointwise convergence of $C_{n}(x)$ for $n \rightarrow \infty$?
b. Consider the integral $\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) d x$
(i) [2] Show that the zeros of the n-th degree Chebyshev polynomial are given by $x_{k}=\cos \left(\left(k-\frac{1}{2}\right) \pi / n\right)$ for $k=1, \ldots n$.
(ii) [3] Show that if the x_{k} are picked as interpolation points that the rule is exact for polynomials of degree $2 n-1$.
(iii) [1] Show that the above integral is equal to the integral $\int_{0}^{\pi} f(\cos (\theta)) d \theta$.
(iv) [1] It can be shown that the application of the Gauss-Chebyshev rule to the integral above is the same as applying the composite midpoint rule to $\int_{0}^{\pi} f(\cos (\theta)) d \theta$. What does this mean for the rate of convergence if we integrate $\exp (\cos (\theta)))$ over the interval $[0, \pi]$ with the composite midpoint rule?

